ADMS Urban Air Quality Management System

ADMS - Unban Air Quality Management System

Air Quality Management

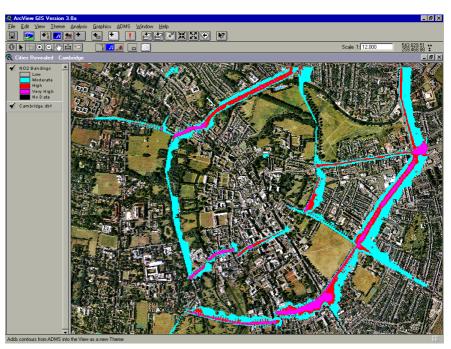
Adds a new road source to the current ADMS scenario Reproduced from the Ordnance Survey 1:50000 map with permission on behalf of the Controller of Her Majesty's Stationery Office (c) Crown Copyright

Advanced Dispersion Model

Desktop GIS

Emissions Inventory Database

ADMS Urban


- Interactive GIS interface
- Direct link to Emissions Inventory database
- Accepts Met Office and users' own meteorological data
- Runs under Windows NT and Windows 95

ADMS Urban

Versatile

- Air Quality Review and Assessment
- Comparisons with air quality limits, guidelines and objectives
- "What if ?" scenarios
- Traffic planning
- Environmental Impact Assessment
- IPC, IPPC and local authority Part B applications
- Future projections
- Emergency planning

Cities Revealed Aerial Photographs © GeoInformation International

ADMS Urban

Model Features

- Full range of source types up to 4100 point, line, area, grid, volume and road sources
- Dispersion is based on an upto-date understanding of the atmospheric boundary layer
- Calculates pollutant emissions from traffic flow data
- Integrated street canyon model
- Advanced treatment of the effect of buildings
- Realistic calculation of flow over complex terrain
- More extensively validated than any other model
- ◆ Models chemical reactions involving NO, NO₂ and Ozone

ADMS Urban

Output

- Calculates concentrations of all major pollutants
- High resolution contours of concentration via GIS for analysis of model predictions
- Simultaneous display of monitored time series concentrations with model predictions
- Calculates short-term and longterm averages e.g. 15min average for SO₂, 24hr average for particulates, 98th, 99.8th percentiles for NO₂, and annual averages

Setup		Source		Meteorology		<u>C</u> hemistry		<u>G</u> rids		Output	
					Outpu	t					
Pollutant ou New I	put Delete										
Nan	ie	Include	Short /Long	Av Hr	eraging tir Min	ne Sec	Rolling average	Percentile (1)	Percentile (2)	Units for output	
NOx SO2		1	LT LT	1	0 15	0		100		lug/m³ lug/m³	
PM			LT	24	0	0	<u> </u>	99		l ug/m³	
Group and s	ource out	put									
Groups				O Sa	urce						
• Groups Nar		tput	le		Name		Include				
Groups Nar All sources		Includ		Source	Name 378		Include				
Groups Nar All sources Factory site	ne			Source	Name e378 station						
Groups Nar All sources	ne ds	Includ		Source Power	Name e378 station rator						

ADMS-Urban

Technical Profile

Model Development

- Based on ADMS industrial dispersion model.
- Sponsors of ADMS include the Environment Agency and HSE.

Sources

- ADMS-Urban allows up to 4100 point, road, area, grid and volume sources.
- ADMS-Urban models continuous and time-varying releases.
- The model calculates concentrations of multiple pollutants simultaneously

Emissions

- ADMS-Urban calculates pollutant emissions from traffic count data using a database of emission factors.
- ADMS-Urban includes an emission inventory compilation system which takes account of diurnal variation in emissions.
- Model the effect of changes in traffic flow and vehicle fleet composition.

Street Canyons

• ADMS calculates the effects of street canyons on dispersion.

Chemistry

 ADMS models chemical reactions involving NO, NO2 and Ozone using the GRS scheme or measured correlations.

Complex Effects

- Complex terrain may have a significant effect on the value and location of the maximum surface concentration typically where there are slopes greater than 1:10.
- ADMS calculates the effect of changes in terrain and roughness on air flow and hence dispersion using CERC's advanced airflow model, FLOWSTAR.
- Buildings may have a profound effect on the concentration distribution changing the concentration sometimes by a factor of ten.

• ADMS explicitly calculates changes in mean flow and turbulence over the building and its effects on the dispersion.

Dispersion

- Advanced algorithms allow for the height dependence of wind speed, turbulence and stability.
- The dispersion model includes a high resolution (~10m) dispersion module for areas where detail is required and a regional scale grid-based dispersion module.
- ADMS takes account of the buoyancy and momentum of sources.

Meteorological Input

- A meteorological preprocessor allows flexible input, either basic data such as cloud cover, wind speed and direction, or boundary layer data such as surface heat flux and boundary layer height.
- Worldwide data specifically for use in ADMS is available from the UK Meteorological Office, or users may enter their own data.

Boundary Layer Structure

- ADMS is based on an up to date understanding of the structure of the atmospheric boundary layer.
- This contrasts strongly with the simplistic surface based approach used by older models such as CALINE, ISC and R91.

Output

- Calculates concentrations corresponding to the objectives of the UK National Air Quality Strategy and other standards and limits.
- Pollutants that can be modelled include NO2, SO2, PM10, VOC's.
- ADMS includes explicit calculation of percentiles (not surrogate statistics) and rolling averages.
- ADMS takes account of background concentrations.

Validation

Comprehensive validation includes:

- Validation conducted as part of local authority air quality review and assessment.
- Comparisons with data from Automatic Urban Network (AUN) and local authority sites.
- Comparisons with standard field, laboratory and numerical data sets.
- Participation in EU workshops on short range dispersion models.
- Comparion with archived LIDAR data in a study sponsored by the Environment Agency.

GIS

- ADMS interacts with ArcView GIS for entering source data and displaying model predictions as contour plots superimposed on maps. Links are also available with other GIS systems.
- This allows geographical analysis of model results to calculate population exposure and determine environmental impact.

Minimum System Recommendations

- Windows NT workstation with an installation of Access 97 (Office 97 Pro preferably).
- 450MHz Pentium, 128Mb RAM, 12GB Hard Disk PC.

CERC

Cambridge Environmental Research Consultants Ltd. 3 King's Parade, Cambridge, UK CB2 1SJ Tel: 01223 357773, Fax: 01223 357492 E-mail: info@cerc.co.uk http:\\www.cerc.co.uk